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RUSSO. Jose
A-INTRODUCTION

Breast cancer is a hormone dependent malignancy whose incidence is steadily increasing in most western
societies and in countries that are becoming industrialized (1-5). In United States, breast cancer is the
second to lung cancer as a cause of cancer-related deaths (1). Apoptosis (programmed cell death) is a cell
suicide process that plays important roles in multiple facets of normal development and physiology (6-8).
Deregulation of apoptosis has been correlated with degenerative diseases, autoimmune disorders and
cancer. Apoptosis is caused by caspases, a family of cystein proteases that cleave target proteins at
aspartyl residues (5, 6). New studies of the biochemical mechanisms evoked by conventional treatments
for neoplastic diseases point to apoptosis as a key process for elimination of unwanted cells (6). Impaired
function of apoptosis-related genes is deeply involved in oncogenesis and the progression of cancers (6-
10). Our laboratory has recently found a link between apoptosis in chemically transformed human breast
epithelial cells and a gene/s located in chromosome 17p13.2 (13), making necessary to identify genes that
may regulate apoptosis (12,14-18). For this purpose we have proposed to isolate in the precise location
in chromosome l7p13.2-pl3.1 the gene (s) responsible for the control of apoptosis and to determine
the functional role of the isolated gene in the process of neoplastic progression in vivo.

B-BODY

B-i-- The experimental system.

We have developed an in vitro system in which the environmental carcinogen benz(a)pyrene (BP) has
been utilized for inducing the transformation of human breast epithelial cells (HBEC) (19-32). For
developing this paradigm of human breast cancer, we have capitalized in the availability of the mortal
HBEC-MCF-10M or Sample #130, which without viral infection, cellular oncogene transfection, or
exposure to carcinogens or radiation became spontaneously immortalized, originating the cell line MCF-
1 OF (33,34). Treatment of MCF-1 OF cells with chemical carcinogens responded to in vitro treatment with
BP with the expression of all the phenotypes indicative of neoplastic transformation. BP-treated MCF-
1OF cells expressed increased survival and formation of colonies in agar methocel, loss of ductulogenic
properties in collagen matrix, invasiveness in a Matrigel in vitro system (clones BP-1) and tumorigenesis
in severe combined immunodeficient (SCID) mice (BPI-E) (19, 22, 27).

B-ii-Background

Because chromosome 17 was involved in both the early and late stages of carcinogenesis, we selected it
for testing their functional roles in chemically transformed HBEC using a microcell-mediated
chromosome transfer (MMCT) technique (35-38). Our study found that seven out of ten clones with
chromosome 17 transferred in to BP1E cells had reverted transformed phenotypes such as advantageous
growth, colony formation in agar-methocel, loss of ductulogenesis and resistant to apoptosis (13). All
together the data indicate that 17p13.2 near the marker D17S796 contains one or more gene/s
controlling the transformation phenotypes. Allelic imbalance in chromosome 17p13.2 at the
microsatellite marker D17S796 has been identified in hepatocellular carcinoma (54) and atypical
ductal hyperplasia and in situ ductal carcinoma of breast (39, 55).
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RUSSO. Jose
Microcell-mediated transfer of a human chromosome 17 into BP1E showed a restoration of the lost
material in BP 1 E- 17 neo (71). We suggested the presence of a gene/s that are related to the transformed
phenotype in 17pl3.2 near the marker D17S796 and a 940 bp of this region was amplified and cloned.
Sequences analyzes has shown that cells with transformation phenotype BP1E have lost 10-12 bases
consisting in a TG repetition. There is no gene already described in this region although, RT-PCR
experiments shown that this region was expressed in MCF-1OF, BP1E and BP1E-17 neo. Also we found
that the expressed-sequence tag EST 3179739 matches a region located 120 bp downstream of the cloned
region. The EST 3179739 sequence comes from a eDNA library from lung (tissue type: carcinoid). A
99% homology was found between both sequences using Blast (www.ncbi.nlm.nih.gov/blast/Blast.cgi).
The predicted amino acid sequence does not share significant homology with any known protein
supporting the idea that this could be a novel protein. In order to clone the frill-length eDNA of this gene,
rapid amplification of cDNA ends (RACE) were performed. RACE is a procedure for obtaining full-
length eDNA copies of low abundance mRNAs. Although, different cDNAs were obtained, none of them
were specific to this region (1 7p 13.2). Furthermore, based on these results we have pursued (i) a detailed
analysis using different microsatellite markers lying near D17S796, (ii) studies on the expression of
different genes near the marker D17S796 and (iii) assays to measure the functional role of them by
determining the apoptotic activity of MCF- 1 OF, BP 1 E and BP BE-i 7neo cells after been challenged by an
apoptotic inducing agent. The data presented below are all the data thus far obtained during the last
year of this grant award that end on April 30, 2005.

B-iii- Methods and procedures.

B-III-a-Cell lines.

The following human breast epithelial cells were used: MCF-1OF (passage 126), BP1E (passage 37) and
BP1E-17neo (passage 13). MCF-10F cell line is a spontaneously immortalized human breast epithelial
cell line (33; 34). BP1E cell line was derived from MCF-1OF transformed by the carcinogen
benz(a)pyrene (BP) (27). The BP1E cells express all the phenotypes indicative of neoplastic
transformation such as colony formation in agar methocel, and loss of ductulogenesis in collagen matrix
(27). BP1E was used in microcell mediated chromosome transfer by inserting the human chromosome 17
originating the BP1E-17neo. This cell line (BP1E-17neo clone 11-3) was maintained in high calcium
media with 5% horse serum and geneticin (400 pg/ml).

B-III-b-Cell lines DNA isolation.

DNA was prepared from MCF-10F, BP1E and BP1E-17neo (11-3). The cells were treated with lysis
buffer (100 mM NaCl, 20 mM Tris-Cl pH 8.0, 25 mM EDTA pH 8.0, 0.5% SDS) with 200pg/ml
proteinase K and incubated at 65°C for 15 minutes with gentle agitation. The samples were cooled down
on ice and treated with 100 jig/ml RNase at 37°C for 30 minutes, followed by one phenol extraction and
chloroform: isoamyl alcohol (24:1). The aqueous layer was adjusted to 0.75M with ammonium acetate
and the DNA was precipitated with 100% ethanol. The samples were centrifuged, dried and dissolved in
distilled water. The DNAs were used for comparative genomic hybridization (CGH) and microsatellite
analysis.

B-Ill-c-Chromosome banding and cytogenetic analysis.
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Cells were arrested in metaphase using colcemid at a final concentration of 0.01 jig/ml and removed from
the culture flask by trypsinization prior to treatment with hypotonic solution (0.075M KC1) for 20 min at
37°C. The cells were fixed in three changes of a 3:1 mixture of methanol: glacial acetic acid at -20'C.
Metaphase cells were prepared by the steam-drying technique (57). Chromosomes were analyzed after G-
banding. At least 20 cells were counted and five cells were karyotyped. Chromosome identification and
karyotipic designations were in accordance with the ISCN (1985), as updated in ISCN (1992).

B-III-d-CGH Analysis.

Protocols for DNA labeling and hybridization were as previously described (58; 59). Gray-level images
of fluorescence were captured with a Zeiss (Thorndale, NY) microscope connected to a cooled, charge-
coupled-device camera (Photometrics, Tucson, AZ). Digital image analysis was performed using the
Quipps software (Vysis, Downers Grove, IL). The threshold was set at 0.8 and 1.2 for losses and gains,
respectively. The mean values of individual ratio profiles were calculated from at least 7 metaphase
spreads. Averaged values were plotted as profiles alongside individual chromosome ideograms.
Overrepresentation exceeding a threshold value of 1.50 was designated a HLG. A HLG defined by a
sharp peak was considered indicative of DNA sequence amplification.

B-III-e- Microsatellite analysis.

The PCR reactions were carried out in a final volume of 10 [tl containing IX PCR buffer (Invitrogen), 1.5
mM MgCI2, 0.5 pmol of each primer, 100tM dNTPs and 0.25U TaqPlatinum (Invitrogen) and 20ng
DNA. The PCR products were analyzed by capillary electrophoresis using CEQ 8000 (Beckman
Coulter). The forward primers were fluorescent-labeled (Proligo, CA) and the PCR conditions consisted
of a denaturation step followed by 16 cycles at 94°C for 20 sec, 60'C for 45 sec (decreasing 0.5°C per
cycle) and 72°C for 30 sec; 34 cycles at 94°C, 20 sec, 50'C for 45 sec and 72°C for 30 sec. The
fluorescent PCR products were mixed with an internal standard size marker and fractionated using
CEQ8000 (Beckman Coulter). Table 1 shows the markers used. Microsatellite instability (MSI) was
defined as a shift of the allelic band or a change (increase or decrease) in the broadness of the allelic band
and lost of heterozygosity (LOH) was defined as a total loss (complete deletion) or a 30% or more
reduction in the signal of one of the heterozygous alleles compared with the control MCF- 1 OF DNA (60).

B-III-f- Growth curve.

The cells were plated in a 96 well plate at a density of 2x10 3 cells in each well chamber. The
quantification of cell proliferation was measured using the colorimetric assay based on the cleavage of the
tetrazolium salt WST-1 to Formazan by mitochondrial dehydrogenases (61). The cells were counted at
24, 48, 72, 96 and 120h post plating. The doubling time was calculated using a growth curve that was
plotted using relative cell number as Y-axis and time as X-axis. Each experiment was performed in
triplicate.

B-II-g- R T-PCR.

Total RNAs were isolated from growing cells at 80% confluence using Trizol (Life Technologies, Inc.)
according to manufacture's instructions. The RNAs were treated with Dnasel (Ambion) during 30 min at
37°C. After Dnasel inactivation, RT-PCR reactions were run using SuperScript One- Step RT-PCR with
Platinum Taq kit (Invitrogen, Life Technologies) in a final volume of 50tl. Controls to check DNA
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contamination were also done. The reverse transcription was done at 45°C during 30 min, followed by a
PCR cycle: denaturalization step at 94°C during 2min, 35 cycles of 94'C for 30 sec, annealing
temperature for 45 sec and 72 0C for 45 sec, and an extension step at 72°C during 10min. To analyze TP53
expression, the primers used amplified a 703-bp fragment between exon 5 to exon 9 (Table 2) (62). The
profiling (PFN) expression was analyzed using primers to amplified a 179- bp fragment between exon 1
to exon 2 (Table 2) (69). The expression of DEFCAP (death effector filament-forming Ced-4-like
apoptosis protein) was analyzed using the primers indicated in Table 2 (63). These primers amplified a
fragment of 322bp and 190bp corresponding to the DEFCAP-L and DEFCAP-S isoforms,
respectively. To study DEFCAP expression also human total RNA from normal breast (Repository
human total RNA, Cat # 15030, Ambion) and adenocarcinoma (Cat # 15031, Ambion) were used. The 03-
actin was used as control for equal loading of RNA and a fragment of 520bp was expected (Locus:
NM_001101 bases 690 to 1200). The following conditions were used for the PCR: 1 cycle for 2 min at
94 0C, 35 cycles at 940C for 30 sec, 600C for 45 sec and 680C for 45 sec and 1 cycle at 72°C for 10min.
PCR products were separated by agarose gel electrophoresis, stained with ethidium bromide and
photographed under UV light.

B-III-h- Real time RT-PCR.

Real-time reverse- transcriptase (RT) PCR was used to quantify the initial amount of the DEFCAP
mRNA in the MCF-1OF, BP1E and BP1E-17neo, respectively. The RNAs were treated with DNAse I
(Ambion) for 30 min at 37°C using the TaqMan methodology (64). The TATA box-binding protein (TBP,
a component of the DNA-binding protein complex TFIID) was used as endogenous RNA control, and
each sample was normalized on the basis of its TBP content. The Primers/Probe used were Hs00248187-
ml (DEFCAP) and Hs 00427620-ml (TBP) from Applied Biosystems. The Abi Prism 7700 Sequence
Detection System (Perkin-Elmer, Applied Biosystems) was used and the DEFCAP target message in the
different samples was quantified by measuring Ct (threshold cycle). The Ct is defined as the fractional
cycle number at which the fluorescence generated by cleavage of the probe passes a fixed threshold above
baseline. The comparative Ct method was used for relative quantitation of the samples Relative
quantitation was performed using the comparative method (Applied Biosystems, User Bulletin #2, ABI
Prism 7700 Sequence Detection System, December 11, 1997, updated 10/2001).

B-III-i- Apoptosis assays.

The cells were washed with cold Guava Nexin Buffer and stained in a 50pl reaction volume with Guava
Nexin PE and Guava Nexin 7-AAD. The stained cells were diluted to 500 [1l with cold Guava Nexin
Buffer and acquired on the Guava PC. Data was acquired on the using Guava PCA system using CytoSoft
software. The cells were induced to undergo apoptosis by incubation with 50 gM Camptothecin for 24
hours at 37°C. One flask of cells was left untreated to provide un-induced control cells.

B-III-j -cDNA microarray.

Total RNA from cells was isolated using Trizol (Life Technologies). The quality of the total RNA was
checked using Bioanalyzer 2100. Slides for the cDNA arrays were prepared at the FCCC DNA
Microarray Facility. Each slide contains approximately 40,000 genes. The procedure consists of four
main steps: 1) extracting RNA from cells, 2) Probe synthesis from total RNA, 3) hybridization procedure,
4) scanning the microarrays and 5) data analysis (Imagine and Gensight). MCF-1OF was compared with
BP1E and l7neo. Cy3 was coupled with MCF1OF and Cy5 coupled with BP1E or l7neo.
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B-iv- Results.

B-iv-a- Transformation phenotypes.

In order to test whether chromosome 17 plays a functional role in the transformation of human breast
epithelial cells (HBEC), we have transferred a human chromosome 17 to the transformed cell line BP1E
and these clones were called BP1E-17neo. MCF-10F, BP1E and BP1E-17neo cells were used to evaluate
colony formation in agar methocel, ductulogenesis in collagen matrix and cell proliferation, all markers of
cell transformation. The cell line BP1E formed colonies over 100[rm in diameter in agar methocel
(Figure 1B), whereas BPlE-17neo (Figure IC) behaved likes the cell line MCF-1OF (Figure IA) by not
forming colonies in agar methocel. In collagen matrix, BP1E-17neo (Figure IF) like the control cells
MCF-10F (Figure ID) formed duct-like structures lined by a monolayer of cubical epithelial cells; they
formed structures reminiscent of the mammary alveolar ductal system. BP-1E cells on the other hand,
grew forming solid spherical masses (Figure IE). The cell proliferation was studied in the three cell lines
and we found that after transfer of chromosome 17 into BP1E, cells showed a reduced growth rates
compared with BP1E cells (Figure IG). The doubling time for BP1E-17neo was 24h, 1.5-fold longer than
the BP1E cells that have a doubling time of 16h and similar to MCF-OF that was 24.6h (Figure IG).

{E

G)

Figure 1. Colony formation in agar methocel,
_ _._ductulogenesis assay and comparative growth

rates among MCF-JOF, BPIE and BPIE-17neo

-4- EF-1OF cells. MCF-JOF (A) and BPIE-1 7 neo (C) did not
4=1E-1o form colonies although BP1E (B) formed colonies

-ME fomclnisatouhBIE()fredclne

over 100 gm in diameter. The number and size of
_ .the colonies were determined 21 days post-plating.

In collagen matrix, MCF-IOF (D) and BP1E-17
neo (F) formed duct-like structures whereas BP1E
(E) formed solid masses. Magnification: lOX. G)
Comparative growth rates in vitro among MCF-

rm. ]OF, BPIE and BP1E-17neo cells. The doubling
time, estimated from the growth curves, was

0 significantly higher for BP1E-1 7neo (24h) than
for BPIE (16h). The doubling time for BPIE-

Thne ) 17neo was similar to MCF1OF (24.6h).
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B-iv-b- Karyotype and CGH analysis.

The cytogenetic characterization of the human breast cell lines MCF-10F, BP1E and BP1E-17neo were
performed using a combination of the standard G-banding and CGH analysis (Figure 2). All the cell lines
had extra genetic material on chromosome 1 at band p34 and they presented a balanced translocation
between chromosome 3 and chromosome 9 t (3; 9) (p13; p21). The CGH analysis helped to identify the
extra genetic material on chromosome arm lp34 to be from 8q24.

The modal number of chromosomes of the control cell line MCF-10F was 46 and for BP1E transformed
cell line was 47. BP1E had an additional isochromosome 10q (Figure 2). DNA losses were not observed
in BPlE cell line using CGH. The modal chromosome number for BP1E-17neo was 48. BP1E-17neo
has the same chromosomal abnormalities observed in BP1E and in addition has an extra copy of
chromosomes 17 (Figure 2). It shows the same gain of chromosome 10q as seen in BP1E. The extra
copy of chromosome 17, probably the one that was microinjected appears to be rearranged and it was
composed of most of the p arm and a portion of 17q22-ter (Figure 2).

MCF-10F

add(l)(p34) t(3;9)(pll,pll) 10 17

Figure 2. Karyotype and CGH analysis of
MCF-10F, BPIE and BP1E-17neo cells.

_0 17 The main differences found in the G-
1 3 9 1o 1

banding and CGH analyses are included. In
the three cell lines, the arrow on
chromosome p shows the extra material at• lp34 present in the three cell lines. The

"arrows on chromosome 3 and chromosome 9
indicated the translocated regions between

BPIE these chromosomes. The iso-chromosomes

add(1Xp34) t(3;9)(pll,p11) +i(10q)(qll,qll) 17 10 present in BPIE and BP1E-17neo are
indicated. The extra chromosome 17present
only in BP1E-17neo is also indicated.

A1 - Vertical lines on the right of each*z ', I chromosome in the CGH analysis represent

I 3 9 17 gains, whereas vertical lines on the left

indicate loss of genetic material

11 3

BPIE-17 neo

add(1)(p34) t(3;9)(p11,p11) +i(lOqXqll,qlI) +17

9 to 17
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B-iv-c- Microsatellite analysis.

Microsatellite analysis was performed using 25 markers for chromosome 17 lying near D17S796 to make
a detail analysis of this region (Table 1). No other differences were found between MCF10F, BP1E and
BP1E-17neo. The PCR products obtained using the marker D17S796 were analyzed using capillary
electrophoresis and the only difference between the three cells lines were found with this marker located
at 17p1 3 .2 confirming our previous results (71). BP1E showed allelic imbalance in 17p13.2 using the
marker D17S796, whereas, BP1E-17neo showed a pattern similar to MCF-10F. This indicated that the
introduction of chromosome 17 in BP 1E reverted this mutation.

Table 1. Markers used for microsatellite studies

Marker Primer Reverse (5' 3') Primers Forward (5' 3') Repeat Location

D17S926 CCGCAGAAGGCTGTTGT GCAGTGGGCCATCATCA dinucleotide 17p13.3

D17S1840 TGGGGCAGACTTGGTCCTT GCCTGGGCGACAGAGTGA dinucleotide 1
7

p
1

3.3

D17S1528 CAGAGGTGGAGATAAGGG AGTAGCCAGGAGGTCAAG dinucleotide 17p13.3

D17S831 GCCAGACGGGACTTGAATTA CGCCTTTCCTCATACTCCAG dinucleotide 17p13.3

D17S1810 CCTAGTGAGGGCATGAAAC TGTCCACTGTAACCCCTG dinucleotide 17p13.3

D17S1832 TGTGTGACTGTTCAGCCTC ACGCCTTGACATAGTTGC dinucleotide 17p13.3

D17S938 ATGCTGCCTCTCCCTACTTA GGACAGAACATGGTTAAATAGC dinucleotide 1
7

p 1 3
.2

D17S796 AGTCCGATAATGCCAGGATG CAATGGAACCAAATGTGGTC dinucleotide 17p13.2

D17S260 CTCCCCAACATGCTTTCTCT AATGGCTCCAAAAGGAGATATTG mononucl. 17p13.2

D17S919 GCTTAATTTTCACGAGGTTCAG AGGCACAGAGTGAGACTTG tetranucl. 1 7 p13.2

D17S906 TTCTAGCAGAGTGAAACTGTCT AGCAAGATTCTGTCAAAAGAG tetranucl. 17p13.2

D17S1149 CGCTGATCTGTCAGGCAGCCCT AACAAGAGTGAACTCCATAGAGAG tetranucl. 1 7
p13.2

D17S720 GAATTCTGAGCATATTGTTTGCCTG CCAGCCTTGGCAACATAGCAAGA tetranucl. 17p13.2

D17S731 TTTCTGGGGAAATTTTCTTGCTCTTA CAACCCCAAGGTAACAACATCCAG trinucleotide 17p13.2

D17S578 CTGGAGTTGAGACTAGCCT CTATCAATAAGCATTGGCCT dinucleotide 17p13.2

D17S960 TAGCGACTCTTCTGGCA TGATGCATATACATGCGTG dinucleotide 17p13.2

D17S1881 TAGGGCAGTCAGCCTTGTG CCCAGTTTAAGGAGTTTGGC dinucleotide 17p13.2

D17S1353 TACTATTCAGCCCGAGGTGC CTGAGGCACGAGAATTGCAC dinucleotide 17p13.2

TP53 ACTCCAGCCTGGGCAATAAGAGCT ACAAAACATCCCCTACCAAACAGC pentanucl. 1
7

p1
3

.1

penta

TP53 dint ATCTACAGTCCCCCTTGCCG GCAACTGACCGTGCAAGTCA dinucleotide 17p13.1

D17S855 ACACAGACTTGTCCTACTGCC GGATGGCCTTTTAGAAAGTGG dinucleotide 17q21.2

D17S579 CAGTTTCATACCAAGTTCCT AGTCCTGTAGACAAAACCTG dinucleotide 17q21.31

D17S250 GCTGGCCATATATATATTTAAACC GGAAGAATCAAATAGACAAT dinucleotide 17q12

THRAI CTGCGCTTTGCACTATTGGG CGGGCAGCATAGCATTGCCT dinucleotide 17q11.2

GH TCCAGCCTCGGAGACAGAAT AGTCCTTTCTCCAGAGCAGGT 17q22.24
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B-iv-d-Analysis of the expression of DEFCAP, TP53 and Profilin by RT-PCR.

We studied the expression of TP53, profilin 1 (PFN1) and DEFCAP, all located in chromosome l7p13,
near the marker D 17S796, the region that previous work of our laboratory shown LOH in the transformed
cell line BP1E [18]. The tumor suppressor gene TP53 is located in l7p13.1 at 1.5cM centromeric to
D17S796. Profilin 1 (PFN 1) is located in 17pl3.2 at 1.8 cM telomeric to the marker D17S796. Profilin
are small (14-17 kD) ubiquitous proteins that are important regulators of F-actin dynamics in cells
(72,73). Profilins bind monomeric actin and depending on the conditions, may inhibit or promote actin
filament assembly. In addition, profilins bind phospholipids (74,75) and polyproline motif like formins
(76) and members of the Enabled (Ena)/mammalian Enabled (Mena)/vasodilator-stimulated
phosphoprotein (VASP) family (77), thus being linking to several signal transduction pathways. Also,
profiling 1 has been suggested as a tumor suppressor gene in breast cancer cells (69). By RT-PCR, no
differences were found in TP53 and PFN1 expression between MCF-10F, BP1E and BP1E-17neo (Figure
3). The DEFCAP gene (death effector filament-forming Ced-4-like apoptosis protein) is located at 1.1 cM
telomeric to the marker D17S796. For DEFCAP two isoforms have been described, DEFCAP-L and
DEFCAP-S and they differ in only 44 amino acids, and only DEFCAP-L is the active isoform [28]. We
found that DEFCAP-L expression was reduced in BP1E and it was over-expressed in BP1E-17neo
compared with the parental cell line MCF-1 OF (Figure 3).

A TP53

703bp

B
PFN I

B-actln

- 520 bp

D DEFCAP
_322-bb
190b p

Figure 3. RT-PCR of TP5, PFNI and DEFCAP in the
different cell lines. RT-PCR using total RNA from
MCF-1OF, BPIE and BPIE-17 neo cells. B-actin was
used as a control for equal RNA quantity used in the
reactions.
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Table 2. Primers used for RT-PCR

Gene Reverse Primer (5' to 3' ) Forward Primer (5' to 3' ) Size

(bp)

DEFCAP TCCCCCTTGGGAGTCCTCCTGAAAATGATC CGAGAACAGCTPGGTCTTCTCCAGGGCTTCG 322 and

190

p5 3 TTCTTGCATTCTGGGACAGCC GCCTCATTCAGCTCTCGGAAC 7 03

Profjili 1 CGAGAGCAGCCCCAGTAGCAGC ACCAGGACACCCACCTCAGCTG 179

(PFN1)

S-actin GGGAAATCGT GCGT GACAT TAAGG CTAGAAGCATTTGCGGTGGACGATGGAGGGGCC 520

B-iv-e-Quantitation of TP53 and DEFCAP by Real time RT-PCR.

Using Real time RT-PCR, the expression of DEFCAP was found 13-fold up regulated in BP 1 B-i17neo and
3-fold down- regulated in BP1E compared with MCF-10F cells (Figure 4). Interestingly DEFCAP
expression was significantly low in breast adenocarcinoma when compared with their normal counterpart
(Figure 5).

131
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B-iv-f-Apoptosis.

The finding that DEFCAP is a gene controlling apoptosis led us to determine if the level of expression
was associated with this function. For this purpose we have studied apoptosis in BP1E and BPlE-17neo
using Guava Nexin procedure (Guava Technologies Inc.). This assay utilizes Annexin V -PE to detect
phosphatidylserine on the external membrane of apoptotic cells. Annexin V is a calcium dependent
phospolipid binding protein with a high affinity for phosphatidylserine (PS), a membrane component
normally localized to the internal face of the cell membrane. Early in apoptosis, PS is translocated to the
outer surface of the cell membrane where Annexin V can bind them. Apoptosis was induced using 50 ptM
Camptothecin and the cells were treated during 20 hs. Differences in the percentage of apoptotic cells
were found between the different cell lines (Table 3). MCF-10F and BP1E-17neo were more apoptotic
that BP1E (Table 3). In high calcium media, there were more BP1E-17neo cells in apoptosis (8.6%) than
in BP1E (6.2%) (Table 3). The percentage of MCF-10F cells in apoptosis was 11.8% (Table 3). When
apoptosis was induced with Camptothecin, the MCF-10F and BP1E-17neo cells in apoptosis was 24.2%
and 15.4% respectively, higher than in BP1E (10.1%) (Table 3). Previous results have shown that
apoptosis rates tend to decrease with BP transformation in MCF-10F (70) and chromosome 17 at the
region p 13.1 plays a role in the activation of the FAS receptor, which mediates apoptosis (71).

Table 3. Apoptosis assay

Cell type Hi Ca media Camptothecin
MCF-10F 11.8±3.5 24.2 ±2.3
BP1E-17neo 8.6 ± 1.9 15.4 + 1.7
BP1E 6.2 ±0.6 10.1 + 1.1
The cell lines were treated with 50pM Camptothecin for 24h to induce apoptosis. More apoptotic BPIE-17neo cells were
observed in early apoptosis.

B-iv-g-cDNA microarrays analysis.

cDNA microarrays were done to study other genes that could be related to the transformation
phenotypes. Genes that were found differentially expressed in the BP1-E transformed cells are described
in Table 4.

Table 4. Differentially expressed genes in BP1E cells compared with
MCF-10F cells

Gene Level of
Expression

TNFAIP6 -3.87
KCNQ1 -3.78
MCF2 -3.31
SCARA3 -3.24
TPM1 -3.06
CCND2 -1.89

DARPP-32 2.46
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Among the down regulated genes are the TNFAIP6, KCNQ1, MCF2, SCARA3, TPM1, CTSL2 and
CCND2 and the only gene significantly upregulated was the DARPP gene. The TNFAIP6 encodes a
tumor necrosis factor, alpha-induced protein 6. The protein encoded by this gene is a secretory protein
that contains a hyaluronan-binding domain known to be involved in extracellular matrix stability and cell
migration. The expression of this gene can be induced by tumor necrosis factor alpha and interleukin-1.
The expression can also be induced by mechanical stimulation in vascular smooth muscle cells, and is
found to be correlated with proteoglycan synthesis and aggregation. The KCNQ1 encodes a potassium
voltage-gated channel, KQT-like subfamily, member 1. K+ channel playing an important role in the
signaling pathways that regulate cell proliferation and apoptosis. KCNQ1 encodes a protein for a voltage-
gated potassium channel required for the repolarization phase of the cardiac action potential. The gene
product can form heteromultimers with two other potassium channel proteins, KCNE1 and KCNE3.
Mutations in this gene are associated with hereditary long QT syndrome, Romano-Ward syndrome,
Jervell and Lange-Nielsen syndrome and familial atrial fibrillation. The gene is located in a region of
chromosome 11 that contains a large number of contiguous genes that are abnormally imprinted in cancer
and the Beckwith-Wiedemann syndrome. The MCF2 gene encodes MCF.2 cell line derived transforming
sequence. MCF2 is a member of a large family of GDP-GTP exchange factors that modulate the activity
of small GTPases of the Rho family. Five-prime recombinations result in the loss of N-terminal codons,
producing MCF2 variants with oncogenic potential. This gene is located in Xq26.3-q27. 1. The SCARA3
gene encodes a scavenger receptor class A, member 3. This gene is related to oxidative stress. Oxidative
stress is a pathogenic condition that causes cellular damage and, in a normal functioning cell, several
transcription factors respond to this threat by modulating expression of genes whose products ameliorate
the altered redox status in some way. SCARA 3 encodes a macrophage scavenger receptor-like protein and
this protein depletes reactive oxygen species, and thus plays an important role in protecting cells from
oxidative stress. The expression of this gene is induced by oxidative stress. The TPM1 gene encodes the
tropomyosin 1 (alpha). Tropomyosins are ubiquitous proteins of 35 to 45 kD associated with the actin
filaments of myofibrils and stress fibers. The CCND2 gene encodes the cyclin D2. The protein encoded
by this gene belongs to the highly conserved cyclin family, whose members are characterized by a
dramatic periodicity in protein abundance through the cell cycle. Cyclins function as regulators of CDK
kinases. Different cyclins exhibit distinct expression and degradation patterns which contribute to the
temporal coordination of each mitotic event. This cyclin forms a complex with and functions as a
regulatory subunit of CDK4 or CDK6, whose activity is required for cell cycle G1/S transition. This
protein has been shown to interact with and be involved in the phosphorylation of tumor suppressor
protein Rb. Knockout studies of the homologous gene in mouse suggest the essential roles of this gene in
ovarian granulose and germ cell proliferation. Therefore the down regulation of all of these genes further
explains the transformation phenotypes of the BP1E cells.

The DARPP-32 (Dopamine- and cAMP-regulated neuronal phosphoprotein) gene is the only one gene
upregulated in BP1E cells (Table 4). It has been shown that DARPP-32 expression is not limited to
dopamine signaling in normal cells of the central nervous system (78). This gene is located in
chromosome 17q12. This protein functions as an actin-binding protein and possibly in cytoskeletal
organization. It was found that-DARPP mRNAs frequently were over-expressed in carcinomas of the
breast, prostate, colon, and stomach compared with normal tissue samples (78). Immunohistochemical
analysis of tissue microarrays that contained 187 carcinoma samples confirmed the strong expression of
DARPP-32 proteins in these tumor types (78). The pattern of expression of DARPP-32 proteins in
normal epithelial tissues suggests that these proteins play an important role in epithelial signaling that
may be tissue specific (78). The observation that DARPP-32 and t-DARPP frequently are overexpressed
in common subtypes of human adenocarcinomas suggesting that these proteins may be important in
tumorigenesis (78).
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Table 5. Differentially expressed
genes in BP1E-17 neo cells

Gene Expression
CDC45L - 4.35
CDC6 -3.86
CDC2 -2.49
CCNA2 - 2.44
CKS2 - 2.2
CCNB2 -2.08
CCNE2 -1.89
CCND1 -1.76
HDAC4 -2.93
PDCD4 1.61
MXII 2.13
GDF15 4.6

In table 5 are depicted the genes differentially expressed in BP 1 E- 1 7neo cells. The CDC45L gene encodes
a cell division cycle 45-like product. The protein encoded by this gene was identified by its strong
similarity with Saccharomyces cerevisiae Cdc45, an essential protein required to the initiation of DNA
replication. Cdc45 is a member of the highly conserved multiprotein complex including Cdc6/Cdc 18, the
monochromosome maintenance proteins (MCMs) and DNA polymerase, which is important for early
steps of DNA replication in eukaryotes. The CDC6 gene encodes the CDC6 cell division cycle 6 homolog
transcripts. The protein encoded by this gene is highly similar to Saccharomyces cerevisiae Cdc6, a
protein essential for the initiation of DNA replication. This protein functions as a regulator at the early
steps of DNA replication. It localizes in cell nucleus during cell cycle G1, but translocated to the
cytoplasm at the start of S phase. The sub cellular translocation of this protein during cell cycle is
regulated through its phosphorylation by Cdks. Transcription of this protein was reported to be regulated
in response to mitogenic signals through transcriptional control mechanism involving E2F proteins. The
CDC2 gene encodes the cell division cycle 2, GI to S and G2 to M transcript. The protein encoded by
this gene is a member of the Ser/Thr protein kinase family. This protein is a catalytic subunit of the highly
conserved protein kinase complex known as M-phase promoting factor (MPF), which is essential for
GUS and G2/M phase transitions of eukaryotic cell cycle. Mitotic cyclin stably associates with this
protein and function as regulatory subunits. The kinase activity of this protein is controlled by cyclin
accumulation and destruction through the cell cycle. The phosphorylation and dephosphorylation of this
protein also play important regulatory roles in cell cycle control. The CCNA2 gene encodes the cyclin A2
transcript. The protein encoded by this gene belongs to the highly conserved cyclin family, whose
members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins
function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation
patterns which contribute to the temporal coordination of each mitotic event. In contrast to cyclin Al,
which is present only in germ cells, this cyclin is expressed in all tissues tested. This cyclin binds and
activates CDC2 or CDK2 kinases, and thus promotes both cell cycle G1/S and G2/M transitions. The
CKS2 gene encodes the CDC28 protein kinase regulatory subunit 2. CKS2 protein binds to the catalytic
subunit of the cyclin dependent kinases and is essential for their biological function. The CKS2 mRNA is
found to be expressed in different patterns through the cell cycle in HeLa cells, which reflects specialized
role for the encoded protein. The CCNB2 gene encodes the cyclin B2. Cyclin B2 is a member of the
cyclin family, specifically the B-type cyclins. The B-type cyclins, BI and B2, associate with p34cdc2 and
are essential components of the cell cycle regulatory machinery. B1 and B2 differ in their sub cellular
localization. Cyclin B 1 co-localizes with microtubules, whereas cyclin B2 is primarily associated with the
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Golgi region. Cyclin B2 also binds to transforming growth factor beta RII and thus cyclin B2/cdc2 may
play a key role in transforming growth factor beta-mediated cell cycle control. The CCNE2 gene encodes
cyclin E2. The protein encoded by this gene belongs to the highly conserved cyclin family, whose
members are characterized by a dramatic periodicity in protein abundance through the cell cycle. Cyclins
function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation
patterns which contribute to the temporal coordination of each mitotic event. This cyclin forms a complex
with and functions as a regulatory subunit of CDK2. This cyclin has been shown to specifically interact
with CIP/KIP family of CDK inhibitors, and plays a role in cell cycle GUS transition. The expression of
this gene peaks at the G1-S phase and exhibits a pattern of tissue specificity distinct from that of cyclin
El. A significantly increased expression level of this gene was observed in tumor-derived cells. It is
located in chromosome 8q22.1. The "AAC4 gene was found down regulated in BPlE-17neo cells. This
protein is responsible for the deacetylation of lysine residues on the N-terminal part of the core histones
(H2A, H213, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an
important role in transcriptional regulation, cell cycle progression and developmental events. HDAC
inhibitors are emerging as an exciting new class of potential anti-cancer agents, although with differential
activity. Recently, Apicidin has been suggested to induce apoptosis through selective induction of Fas/Fas
ligand, resulting in the release of cytochrome c from mitochondria to the cytosol and subsequent
activation of caspase 9 and caspase 3. Apicidin is a cyclic tetrapeptide shown to inhibit histone
deacetylase (HDAC) and it showed a broad spectrum of antiproliferative activity against various cancer
cell lines.

Among the upregulated genes in the BPlE-17neo cells are the PDCD4, MXJ1 and GDF15 (Table 5). The
PDCD4 encodes the programmed cell death 4 (neoplastic transformation inhibitor). This gene encodes a
protein localized to the nucleus in proliferating cells. Expression of this gene is modulated by cytokines in
natural killer and T cells. The gene product is thought to play a role in apoptosis but the specific role has
not yet been determined. PDCD4 is a new tumor suppressor gene. It has been shown that overexpression
of PDCD4 in carcinoid cells results in inhibition of cell proliferation. This gene is located in chromosome
10q25.It has been observed that antiestrogen and the HER-2/neu antagonist, Herceptin (Trastuzumab),
also induced PDCD4 expression in T-47D cells, suggesting that PDCD4 may play a central role in growth
inhibition in breast cancer cells (79). Transient overexpression of PDCD4 in T-47D (ER+, RAR+) and
MDA-MB-231 (ER-, RAR-) cells resulted in apoptotic death, suggesting a role for PDCD4 in mediating
apoptosis in breast cancer cells (79). PDCD4 protein expression has previously been reported in small
ductal epithelium of normal breast (79). The MXIJ gene encodes the MAX interactor 1 transcript.
Expression of the c-myc gene, which produces an oncogenic transcription factor, is tightly regulated in
normal cells but is frequently deregulated in human cancers. The protein encoded by this gene is a
transcriptional repressor thought to negatively regulate MYC function, and is therefore a potential tumor
suppressor. This protein inhibits the transcriptional activity of MYC by competing for MAX, another
basic helix-loop-helix protein that binds to MYC and is required for its function. Defects in this gene are
frequently found in patients with prostate tumors. It is located in chromosome 10q25.The GDF15 gene
encodes the growth differentiation factor 15. Growth differentiation factor-15 (GDF-15) is a novel
member of the transforming growth factor-beta superfamily and has been shown to be induced in neurons
subsequent to lesions. Growth differentiation factor 15 (Gdfl 5) is known to be severely up-regulated after
injury and have been suggested to be involved in tissue regeneration (80).

Altogether the down regulation in BP1-E-17 neo cells of CDC45L, CDC6, CDC2, CCNA2, CKS2,
CCNB2, CCNE2, CCND1, HDAC4 genes, and the upregulation of PDCD4, MXJl and GDF15 genes,
that are in general involved in cell proliferation and or apoptosis, clearly indicates that their
transcription could be regulated by the DEFCAP gene located in the D17S796 region. This is in
itself a novel observation that provides significant relevance to our study and support the notion
that controlling this gene may have significant relevance to the therapy of the human disease.
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C-KEY RESEARCH ACCOMPLISHMENTS

i- DEFCAP gene (death effector filament-forming Ced-4-like apoptosis protein) is approximately at
1. 1cM downstream of the marker D 17S796.

ii- DEFCAP also known as NALP1, NAC or CARD7, and it was the first NALP-family protein to be
identified on the basis of its sequence homology to APAF-1 (63; 65; 66, 67) is down-regulated in BP1E
cells and overexpressed in BP 1E-neo cells in comparison with MCF 1 OF cells.

iii- DEFCAP expression is associated with apoptosis and the abrogation of the neoplastic phenotype. In
addition this could be relevant to the human disease since primary breast cancer has lower level of
expression of this gene.

iv- P53 a gene close to D17S796 is not affected during the neoplastic transformation and is not modified
when Ch. 17 was transferred to the transformed cells.

v- We provide evidence that the down regulation in BP1-E-17 neo cells of CDC45L, CDC6, CDC2,
CCNA2, CKS2, CCNB2, CCNE2, CCND1, HDAC4 genes, and the upregulation of PDCD4, MXI] and
GDF15 genes, that are in general involved in cell proliferation and or apoptosis, clearly indicates that
their transcription could be regulated by the DEFCAP gene located in the D17S796 region. This is in
itself a novel observation that provides significant relevance to our study and support the notion that
controlling this gene may have significant therapeutic relevance to the human disease.

vi- The DEFCAP gene seems to work in concert with multiple pathways making this gene a key player
in transcription regulation.

D-REPORTABLE OUTCOMES

1. Fernandez, S.V., Lareef, M.H., Russo, I.H., Balsara, B.B., Testa, J. and Russo, J. Role of 17pl3.2 in
the neoplastic transformation of human breast epithelial; cells. Proc. Am. Assoc. Cancer
Res.45:4274a, 2004.

2. Fernandez, SV., Lareef, MH., Russo, IH., Balsara, B., Russo, J. Role of DEFCAP gene in the
transformation of human breast epithelial cells. Mutation Research (Submitted), 2005.

3. Fernandez, S.V., Lareef, M.H., Russo, I.H., Balsara, B.B., and Russo, J. Role of DEFCAP gene in the

transformation of human breast epithelial cells. Proc. Era of Hope, June 2005

D-CONCLUSIONS

All together the data indicate that 17pl3.2 near the marker D17S796 contains the DEFCAP gene that
when inactivated is associated with the expression of cell transformation phenotypes, and that in vitro
condition are expressed as increase doubling time, colony formation in semisolid media, loss of the ability
to from ductules in collagen matrix, loss of the response to apoptosis inducing agent, and in vivo has been
associated with ductal hyperplasia and carcinoma in situ of the breast (39) that are early stages of breast
cancer. The data also provide evidence that in BP1-E-17neo cells the down regulation of CDC45L,
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CDC6, CDC2, CCNA2, CKS2, CCNB2, CCNE2, CCND], HDAC4 genes, and the upregulation of
PDCD4, MXI1 and GDF15 genes, that are in general involved in cell proliferation and or apoptosis,
clearly indicates that their transcription could be regulated by the DEFCAP gene located in the D 17S796
region. This is in itself a novel observation that provides significant relevance to our study and support
the notion that controlling this gene may have therapeutic relevance to the human disease.
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Abstract
Genomic alterations of chromosome 17 play an important role in breast cancer development. To
further investigate the role of chromosome 17 in the initiation and progression of breast cancer,
we have used an in vitro experimental system in which a human chromosome 17 was introduced
into BP1E, a transformed cell line derived from benzo(a)pyrene (BP)-treated human breast
epithelial cells MCF-10F. MCF-10F cells do not form colonies in agar methocel and form
ductules in collagen, whereas the transformed BP1E cells do form colonies and have lost their
ductulogenic capacity. Transfer of chromosome 17 originated BP1E-17neo cells, which, like
MCF-10F cells, did not form colonies in agar methocel, formed ductules in collagen, and their
doubling time was increased 1.5-fold compared to that observed in BP1E cells. Cytogenetic
analysis confirmed the presence of an additional chromosome 17 in BP1E-17neo cells and
comparative genomic hybridization (CGH) shown that the extra copy of chromosome 17 was
rearranged, containing most of the p arm and the telomeric region of the q arm (q22-ter). BP1E-
17neo cells were more apoptotic compared with the transformed cell line BP1E and we found
that DEFCAP gene, a potential regulator of apoptotic caspases, located in 17pl3.2 was
differencialy expressed in the three cell lines. Real time PCR indicated that the expression of
DEFCAP was 3-fold down-regulated in BP1E and and 13-fold up-regulated in BP1E-17neo
compared with the parental cell line MCF-10F. The results indicate that DEFCAP play a
functional role in the expression of the transformation phenotype.

1. Introduction.
Genomic alterations of chromosome 17 play an important role in the initiation and progression of
human breast cancer [1-3]. This chromosome contains the oncogene HER2/neu located at
17q21.l [4] and three known tumor suppressor genes (TSG), TP53 located at 17pl3.1, NFl at
17ql 1.2 and BRCA1 at 17q21.31 [5,6]. There are also several putative TSGs such as HICI and
OVCA2 both located at 17p13.3, ELAC2 at 17p12, TOC at 17q25 and DMC1 at 17q25.2 [7-12].
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Allelic losses from 17p have been observed in the absence of any detectable anomaly at the TP53
locus [13,14], and alterations on 17q have been found in addition to the amplification of the
HER2/neu or the inactivation of NF1 [15]. The PHB gene (prohibitin) at 17q21.33 may be
important in breast cancer progression, whereas the RARA gene on 17q21.2 has been implicated
in acute promyelocytic leukemia [ 16,17].

To further investigate the role of chromosome 17 in the initiation and progression of human
breast cancer, we have used an in vitro experimental system in which a normal human
chromosome 17 was introduced into the transformed cell line BP1E using microcell mediated
chromosome transfer (MMCT). Transfer of chromosome 17 into BP1E cells abrogated the
transformation phenotype by reducing the cell growth, colony formation in agar methocel, loss
of ductulogenic capacity and increased susceptibility to camptothecin induced apoptosis. The
abrogation of these phenotypes was associated with overexpression of DEFCAP (death effector
filament- forming Ced-4 like apoptosis protein) gene located at 17pl3.2 that was down regulated
in BP1E and overexpressed in BP1E-17neo in relation to the parental cell line MCF-1OF. This
data confirm previous results using microsatellite analysis in which BP1E had LOH in
chromosome 17pl3.2 with the marker D17S796, and this region was restored in BP1E-17neo
cells [18], suggesting that DEFCAP gene located in this region play a functional role in the
transformation of human breast epithelial cells.

2.Materials and Methods.

2.1. Cell lines and culture conditions
The following human breast epithelial cells were used: MCF-1OF (passage 126), BP 1E (passage
37) and BP1E-17neo clone II-C (passage 13). The MCF-10F cell line is a spontaneously
immortalized human breast epithelial cell line [19,20]. The BP1E cell line was derived from
MCF-1OF transformed by the carcinogen benzo[cc]pyrene (BP) [21,22]. The BP1E cells express
all the phenotypes indicative of neoplastic transformation such as colony formation in agar
methocel and loss of ductulogenesis in collagen matrix [21]. BP1E was used for MMCT of
human chromosome 17, which generated a cell line designated BP 1 E- 1 7neo [18]. This cell line
BPlE-17neo was maintained in high calcium media with 5% horse serum and geneticin (400
gg/ml).

2.2. Colony formation assay.
For this assay, we have used a 24-wells chamber pre- coated with 500 jl 0.8% agar base. The
cells were plated at 104 cells per well in 0.8% agar methyl-cellulose 25% horse serum [23], and
they were fed twice a week with high calcium medium containing 5% horse serum. The number
of cells plated was determined by a count of cell number at 24h post-plating. The number and
size of the colonies were determined 21 days later [23].

2.3.Ductulogenesis assay in collage matrix.
Collagen gels were prepared for studying the three-dimensional growth of the cells. The
collagen gel was prepared by making a final solution containing 8% (v/v) F-12, 2% (v/v)
NaHCO3 (58.8mg/ml), 89.3% (v/v) Vitrogen Collagen (Cohesion Technologies, CA), and 0.36%
(v/v) NaOH (2.78N). The final collagen concentration was 2.5mg/ml. A base layer of 0.5 ml
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was added to each well and 0.5ml collagen containing 12,500 cells was added to the top after the
base became hard. Twenty-four wells chamber were used and four wells were used for each cell
line. The cells were incubated at 37°C, and after 24h high calcium media containing 5% horse
serum was added to each well and changed twice a week. The three-dimensional structures were
evaluated 21 days post-plating [23].

2.4. Growth curve.
The cells were plated in a 96-wells plate at a density of 2x10 3 cells in each well chamber. The

quantification of cell proliferation was measured using the colorimetric assay based on the
cleavage of the tetrazolium salt WST-1 (Roche, IN) to Formazan by mitochondrial
dehydrogenases [24]. The cells were counted at 24, 48, 72, 96 and 120h post plating. The
doubling time was calculated using a growth curve that was plotted using relative cell number as
Y-axis and time as X-axis. Each experiment was made in triplicate.

2.5. DNA isolation
DNA was prepared from MCF-10F, BP1E and BP1E-17neo cells. The cells were treated with
lysis buffer (100 mM NaCl, 20 mM Tris-Cl pH 8.0, 25 mM EDTA pH 8.0, 0.5% SDS) with
200[tg/ml proteinase K and incubated at 65°C for 15 minutes with gentle agitation. The samples
were cooled down on ice and treated with 100 ýtg/ml RNase at 37°C for 30 minutes. One phenol
extraction was done followed by another with chloroform: isoamyl alcohol (24:1). The aqueous
layer was adjusted to 0.75M with ammonium acetate and the DNA was precipitated with 100%
ethanol. The samples were centrifuged, dried and dissolved in distilled water. The DNAs were
used for comparative genome hybridization (CGH).

2.6. Chromosome banding and cytogenetic analysis
Cell were arrested in metaphase using colcemid at a final concentration of 0.01ýtg/ml and
removed from the culture flask by trypsinization prior to treatment with hypotonic solution
(0.075M KC1) for 20 min at 37'C. The cells were fixed in three changes of a 3:1 mixture of
methanol: glacial acetic acid at -20'C. Metaphase cells were prepared by the steam-drying
technique [25]. Chromosomes were analyzed after G-banding and at least 20 cells were counted
and five cells were karyotyped. Chromosome identification and karyotypic designations were in
accordance with the ISCN (1985), as updated in ISCN (1992).

2.7. Comparative genome hybridization (CGH)
Protocols for DNA labeling and hybridization were done as previously described [26,27]. Gray-
level images of fluorescence were captured with a Zeiss (Thorndale, NY) microscope connected
to a cooled, charge-coupled-device camera (Photometrics, Tucson, AZ). Digital image analysis
was performed using the Quipps software (Vysis, Downers Grove, IL). The threshold was set at
0.8 and 1.2 for losses and gains, respectively. The mean values of individual ratio profiles were
calculated from at least 7 metaphase spreads. Averaged values were plotted as profiles alongside
individual chromosome ideograms. Overrepresentation exceeding a threshold value of 1.50 was
designated a high level gain (HLG). A HLG defined by a sharp peak was considered indicative
of DNA sequence amplification.

2.8. Apoptosis
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The cells were cultured to 70-80% confluence in a T75 flask and they were induced to undergo
apoptosis by treatment with medium containing 50jM camptothecin. A 50mM stock solution of
camptothecin in DMSO was used. Another T75 flask was left untreated to provide uninduced
control cells. At 24h after addition of camptothecin, the induced and uninduced cells were
harvested. The culture media was removed and centrifuged to recover apoptotic and dead cells.
The adherent cells in the flask were washed with calcium- and magnesium-free Dulbecco's
phosphate buffered saline (PBS) and trypsine was added. Cells were collected using culture
media, centrifuged and the supernatant was removed. The adherent cells were pooled with the
corresponding apoptotic and dead cells recovered from the culture media. Cells were washed
with PBS and resuspended in IX Nexin buffer to a final concentration of 2 X 106 cells/ml.
Apoptosis was study using the Guava Nexin assay (Guava Technologies Inc). The samples were
prepared for the Guava Nexin assay as described by the manufacture. Briefly, 40 VI of cells was
stained with 5 ýil of Annexin V-PE and 5tl of Nexin 7-AAD during 20 min on ice, shielded from
light exposure. At the end of the incubation period, 450 [tl of IX Nexin buffer was added to each
tube. Data acquisition was made using the Guava PCA system. The assay was made in triplicate
for each cell line.

2.9. Analysis of DEFCAP and TP53 expression
Total RNAs were isolated from growing cells at 80% confluence using Trizol (Life
Technologies, Inc.) according to manufacture's instructions. The RNAs were treated with Dnasel
(Ambion) during 30 min at 370C. After Dnasel inactivation, RT-PCR reactions were performed
using SuperScript One- Step RT-PCR with Platinum Taq kit (Invitrogen, Life Technologies) in a
final volume of 50jl. Equal quantities of total RNA (133ng) were used for the three cells lines to
compared the expression of DEFCAP and TP53. For each sample, RT-minus control was also
included as a negative control. The reverse transcription was done at 45°C during 30 min,
followed by a PCR cycle: denaturalization step at 94°C during 2min, 35 cycles of 94°C for 30
sec, 60'C for 45 sec and 72°C for 45 sec, and an extension step at 72°C during 10min. TP53
expression was analyzed using 5'-TTCTTGCATTCTGGGACAGCC- 3' and 5'-
GCCTCATTCAGCTCTCGGAAC- 3' to amplify a 703-bp fragment between exon 5 to exon 9.
The DEFCAP (death effector filament-forming Ced-4-like apoptosis protein) expression was
analyzed using the primers 5'-TCCCCCTTGGGAGTCCTCCTGAAAATGATC-3'and 5'-
CGAGAACAGCTGGTCTTCTCCAGGGCTTCG- 3' that amplified a fragment of 322bp and
190bp corresponding to the DEFCAP-L and DEFCAP-S, respectively [28].
The [-actin was used as control for equal RNA loading and a product of 520bp was expected
using 5'-GGGAAATCGTGCGTGACATTAAGG-3' and
5'-CTAGAAGCATTTGCGGTGGACGATGGAGGGGCC- 3'.

2.10. Quantitative analysis of DEFCAP and TP53 expression
Real time reverse-transcriptase (RT) PCR was used to quantify the amount of the DEFCAP and
TP53 mRNAs in MCF-10F, BP1E and BP1E-17neo. DNAseI-treated total RNA was quantified
using the Agilent 2100 BioAnalyzer in combination with RNA 6000 Nano LabChip and 300 ng
of RNA were reverse-transcribed using iScriptTM cDNA Synthesis kit (Bio-Rad) according to the
manufacturer's instructions. For each sample, a RT-minus control was also included to provide a
negative control for the PCR. The TATA box-binding protein (TBP, a component of the DNA-
binding protein complex TFIID) was used as endogenous RNA control and each sample was
normalized on the basis of its TBP content. The Taqman sets (Primers/Probe) used were
Hs00248187_ml for DEFCAP, HsOO153340_ml for TP53 and Hs00427620_ml for TBP
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(Applied Biosystems). The Primer/ Probe Hs00248187_ml detects both DEFCAP isoforms,
DEFCAP-L and DEFCAP-S. TaqMan assays were run using Applied Biosystems 7900 HT
instrument. The Taqman 2X Universal master mix (Applied Biosystems) was used for TP53 and
QuantiTectTM Probe PCR kit (Qiagen) was chosen for DEFCAP because it yielded a higher ARn
and a better dynamic range. The Ct (threshold cycle) was calculated using two different amounts
of cDNA for each sample (30 ng and 7.5 ng total RNA) to allow measurement of the PCR
efficiency. The Ct is defined as the fractional cycle number at which the fluorescence generated
by cleavage of the probe passes a fixed threshold above baseline. The SDS2.1 software based on
the comparative Ct method was used for data analysis. The comparative method calculates the
relative gene expression using the following equation: Relative quantity= 2 -AACt (User Bulletin
2, Applied Biosystems).

3.Results

3.1. Transformation phenotypes and apoptosis
In order to test whether chromosome 17 plays a functional role in the transformation of BP1E
cells, we have transferred a human chromosome 17 to this cell line using MMCT and these
clones were called BP 1B- 7neo [18]. One of these clones, BP 1 B- 7neo clone II-C, was chosen
for these studies because was one the clones in which the marker D17S796, located in
Chl 7p13.2, was restored in BP1E-17neo cells [18], suggesting that a gene located in this region
play a functional role in the transformation of human breast epithelial cells. MCF-10F, BP1E
and BPBE-17neo cells were used to evaluate colony formation in agar methocel, ductulogenesis
in collagen matrix and growth rate, all markers of cell transformation [21,23,29]. The cell line
BP1E formed colonies over 100 jm in diameter in agar methocel, whereas BP1E-17neo behaved
likes the cell line MCF-1OF by not forming colonies in agar methocel (Figures 1A, B, and C). In
collagen matrix, BP1E-17neo like the control cells MCF-10F formed ductule-like structures
(Figures 2A, B and C) lined by a monolayer of cubical epithelial cells. BP-1E cells on the other
hand, grew forming solid spherical masses (Figure 2 B). BP1E-17neo grew at slower rate
compared with the transformed cell line BP1E (Figure 3). The doubling time for BP1E-17neo
was 24h, 1.5-fold longer than the BP1E cells that have a doubling time of 16h and similar to
MCF-1OF that was 24.6h (Figure 3).

Figure 1. Colony formation in agar
AK B C methocel. A) MCF-10F, B) BP1E and C)

BP1E-17neo cells. The number and size of
the colonies were determined 21 days post-
plating. MCF-10F and BPIE-17 neo cells
did not form colonies although BP1E cells
formed colonies over 100 gtm in diameter.
Magnification: i OX

3.2. Karyotype and comparative genome hybridization (CGH) analysis
The cytogenetic characterization of the human breast cell lines MCF-10F, BP1E and BP1E-
17neo were made using a combination of standard G-banding and CGH analysis (Figure 4).
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All the cell lines had extra genetic material on chromosome 1 at band p34 as well as balanced
translocation between chromosome 3 and chromosome 9, t (3; 9) (p13; p21). The CGH analysis
allowed identifying the extra genetic material on chromosome arm lp34 to be from 8q24. The
modal chromosome number of the control cell line MCF-10F was 46, XX and for BP1E
transformed cell line was 47, XX. BP1E had an additional isochromosome 10q and DNA losses
were not observed in this cell line using CGH (Figure 4).

SB Figure 2. Ductulogenesis assay in collagen
2A matrix. A) MCF-10F, B) BP1E and C) BP1E-17neo

cells. MCF-10F and BPIE-17 neo cells formed
I A ductule-like structures in collagen, whereas BP1E4 cells form solid masses. Magnification: IOX

The modal chromosome number for BP1E-17neo was 48. BP1E-17neo has the same
chromosomal abnormalities observed in BP 1E and in addition has an extra copy of chromosomes
17 (Figure 4). It shows the same gain of chromosome 10q as seen in BP1E. The extra copy of
chromosome 17, the one that was transferred by MMCT, was rearranged being composed of
most of the p arm and a portion of 17q22-ter (Figure 4). Although, CGH had not detected
change in BP1E chromosome 17, previous work of our laboratory using different microsatellite
markers shown that the transformed cells line BP1E had a loss of heterozygosity (LOH) using
the marker D17S796 located at 17p13.2 and, the transfer of chromosome 17 had correct this loss
[18]. Suggesting that this region contain a gene or genes associated with the abrogation of the
transformation phenotype.

Figure 3. Comparative growth rates in vitro among
MCF-10F, BP1E and BP1E-17neo cells. The doubling

40000 - - F-10F time, estimated from the growth curves, was significantly
-0- BP1E-17neo s f-PIE higher for BP1E-17neo (24h) than for BP1E (16h). The

30 oo- doubling time for BP1E-17neo was similar to MCF10F
(24.6h).

": 20000 -

10000 -

0
Oh 24h 48h 72h 96h 120h

Time (h)

3.3. Apoptosis
Apoptosis was studied in MCF-1OF, BP1E and BP1E-17 neo using the Guava Nexin procedure.
This assay utilizes Annexin V-PE to detect phosphatidylserine (PS), a membrane component
normally localized to the internal face of the cell membrane. Early in apoptosis, PS is
translocated to the outer surface of the cell membrane where Annexin V can bind them.
Apoptosis was studied in uninduced and induced cells with camptothecin (Figure 5). MCF-1OF
and BP1E-17neo were more apoptotic that BP1E even when apoptosis was not induced (Figure
5). In high calcium media, there was more BP1E-17neo cells in early apoptosis (3%) than in
BP1E (0.6%) although the percentage of cells in late apoptosis were similar between these two
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cell lines (Figure 5). When apoptosis was induced with camptothecin, the percentage of cells in
early apoptosis was similar between MCF-1OF and BPlE-17neo (6%) although BP1E had a
lower number of cells in early apoptosis (4%); BPlE-17neo cells in late apoptosis were 9%,
higher than BP1E (6%) but it did not reach the values for MCF-1OF (18%) (Figure 5).

MCF-10F Figure 4. Karyotype and CGH analysis of MCF-10F,
add(l) (p34) t(3;9)(pll,pll) 10 17 BP1E and BP1E-17neo cells. Differences among the

cell lines are shown. The arrow on chromosome 1
shows the extra material at lp34 present in the three cell
lines. The arrows on chromosome 3 and chromosome 9

.. . .'17 chromosomes. The arrows point to isochromosome 10
in BPiE and BPtE-17neo cells, and chromosome 17

present only in BP1E-17neo cells. Vertical green lines
Son the right of each chromosome in the CGH analysis

represent gains, whereas red vertical lines on the left
indicate loss of genetic material.

BP1E

add(1Xp34) t(3;9)(p11,pll) +i(10qXqll,qna) 17 3.4. TP53 and DEFCAP expression

We studied TP53 and DEFCAP expression,
both genes located in chromosome l7pl3, near

3 - 0 17 the marker D17S796, the region that previous
1 3 8 1work of our laboratory shown LOH in the

yI transformed cell line BP1E [18]. The
DEFCAP gene (death effector filament-

1y forming Ced-4-like apoptosis protein) is
located at 1.1cM telomeric to the marker

BPI -l7 no D17S796. The tumor suppressor gene TP53 is
located in 17p13.1 at 1.5cM centromeric to

add(1)(p34) t(3;9)(pll,pll) +i(10qXq1l,qll) +17 D17S796. For DEFCAP two isoforms have

been described, DEFCAP-L and DEFCAP-S
a and they differ in only 44 amino acids, and

"____ only DEFCAP-L is the active isoform [28].
1 ..By RT-PCR, we found that DEFCAP-L

expression was reduced in BP1E and it was
L i t L ![ U over-expressed in BP 1E-i 7neo compared with

the parental cell line MCF-1OF (Figure 6).
The DEFCAP and TP53 expressions in the

three cell lines were quantified by Real time RT-PCR. The expression of DEFCAP was found
13-fold up regulated in BP I E-17neo and 3-fold down- regulated in BP 1E compared with MCF-
1OF cells (Figure 7). No differences were found in TP53 expression using RT-PCR (Figure 7)
neither by Real time RT-PCR (data not shown) in the three cell lines. The Ct values of 37.7 for
DEFCAP and 26.5 for TP53 in MCF-1OF (using 30ng RNA) indicated a low expression of
DEFCAP compared to TP53.
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Figure 5. Apoptosis assays. Apoptosis was studied in
MCF-10F, BP1E and BP1E-17neo. Cells were growth in
media without or with 50gtM camptothecin. Cells in early
and late apoptosis are indicated in each case. MCF-IOF and

..................................................................... ......... ...... BP E-17neo w ere m ore apoptotic than the transform ed cell
line BP1E. The results are shown with standard deviation.

.................... .... .... El.......

Figure 6. DEFCAP and TP53 expression by RT-
PCR in MCF-10F, BP1E and BP1E-17neo. The

RT-PCR was made using 133 ng of total RNA. The
expression of DEFCAP and p53 in the three cell lines

are shown (upper part of the gel); the 13-actin
expression is shown as control (bottom part of the
gel). DEFCAP expression was down-regulated in
BP1E and up-regulated in BplE-17neo compared
with the parental cell line MCF-1oF. TP53
expression was similar in the three cell lines.
Controls without RNA (blanks) were also included to

check DNA contamination.

Figure 7. Relative gene expression levels of DEFCAP in MCF-1pF,
g.P1E and BP1E-17neo. The DEFCAP expression was 13-fold up
BP regulated in BP1E-17neo and 3-fold down regulated in BP1E compared

wihwith MCF-1OF. The results are shown with standard deviation.

Si.

4.Discussion
The human breast epithelial cell line MCF-d 1F transformed with the chemical carcinogen
benzo[cF]pyrene gave rise to BP1E cells which form colonies in agar methocel and loss their
ductulogenic capacity in collagen gel [21]. In the present work, we have shown that the transfer
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of chromosome 17 reverted the transformed phenotype and reduced the growth rate of these cells
to values similar to that of MCF-10F cells. Bp1E-17neo cells did not form colonies in agar
methocel and formed ductule-like structures in collagen as MCF-10F and transfer of
chromosome 17 was associated with this reversion. BP1E cells acquired an isochromosome 10
not found in the parental MCF-1OF cells, and this isochromosome was also present in BP1E-
17neo cells. In addition, BP1E-i7neo cells acquired an extra, rearranged chromosome 17 that
contains most of the p arm and part of the q arm, q22-ter. Taken together, these findings suggest
that although BP1E cells have gained an isochromosome 10 in the process of chemical
transformation by benzo(a)pyrene, this carcinogen also has produced a mutation(s) in
chromosome 17 that was likely responsible for the observed changes in growth rate, colony
efficiency and ductulogenic capacity. Our observations that transfer of chromosome 17 (17p and
17q22-ter) into BP1E suppressed the growth of this cell line suggests that this chromosome
harbors a tumor suppressor gene(s), confirming studies reported in the literature [13,30-32].
Transfer of human chromosome 17 into CAL51 breast cancer cells resulted in loss of
tumorigenicity and anchorage independent growth, changes in morphology, and reduction of cell
growth rates and as in our study, these clones contained a rearranged chromosome composed of
17p and the distal portion of 17q [30].

CGH had not shown changes in BP1E because although is a useful molecular cytogenetic
method for screening chromosomal imbalances, it has a limited resolution for detection of gains
or losses of at least 5-15Mb [27]. Based on previous results using microsatellite analysis has
revealed that BP1E had LOH in chromosome 17pl3.2 with the marker D17S796, and this region
was restored in BP1E-17neo cells [18], indicate that this region must contain a gene or genes
responsible for the abrogation of the transformation phenotype. Allelic losses in chromosome
17p have been reported in 40-60% of sporadic breast carcinomas [33-35]. Deletion mapping
analyses have shown that the region between the markers D17S938 and TP53 is one of the most
frequently deleted regions in sporadic breast carcinoma [36]. The marker D17S796 resides
between the marker D17S938 and TP53, and D17S796 is located approximately 2kb from
D17S938. LOH in the 17p13.2 region have been identified by others investigators in atypical
ductal hyperplasia and in situ ductal carcinoma of the breast [37]. Furthermore, a high frequency
of LOH was detected in hepatocellular tumors with the marker D17S796 [38]. As BP1E-17neo
cells were more apoptotic compared with the transformed cell line BP1E, we studied the
expression of TP53 and DEFCAP, both related to apoptosis and located near the marker
D17S796. We found that the expression of TP53 was similar in MCF-10F, BP1E and BP1E-
17neo but different expression of DEFCAP was found between the three cell lines. Lower
DEFCAP expression was found in BP1E and there was an over-expression in BP1E-17neo
compared with the parental cell line MCF-1 OF. By Real time RT-PCR, we found that DEFCAP
was 3-fold down-regulated in BP1E, whereas in BP1E-17neo was 13-fold up-regulated
compared with MCF-10F. The DEFCAP protein also known as NALP1, NAC or CARD7
contains a caspase recruitment domain, and it has been shown that its overexpression in MCF7
cells induces apoptosis either through a direct association with caspase-2 and caspase-9 [28] or
indirectly, through an interaction with APAF-1 and subsequent enhancement of apoptosome
function [39].

Collectively, these data indicate that chromosome 17 (17p) contains one or more genes that when
inactivated is/are associated with cell transformation. In vitro, the transformed phenotype is
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characterized by increased cell proliferation, colony formation in semisolid media, and loss of
the ability to form ductules in collagen matrix which in vivo has been associated with ductal
hyperplasia and carcinoma in situ of the breast [37], consistent with early stages of breast cancer.
Our results shown that after transfer of chromosome 17, the BP1E 17 neo cells became more
apoptotic like the control cell line MCF- 1 OF, however the level of expression of DEFCAP does
not correlate directly with the amount of apoptosis, although an increase in apoptosis can explain
the decrease in the rate of cell growth it can not explain the loss of cell contact inhibition
(colony formation ) and the ability to form ductules in collagen suggesting the this gene could
play an additional role in the expression of the transformation phenotype. In addition we can not
rule out the possibility that genes located in 17q22-ter, in which not genomic alterations were
found in BP 1 -E [18], might play a role in this process.
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Genomic alterations of chromosome 17 play an important role in breast cancer
development. To further investigate its role in the initiation and progression of breast
cancer, we have used an in vitro experimental system in which a human chromosome 17
was introduced into BP 1 E, a transformed human breast epithelial cell (HBEC) line
derived from the normal spontaneously immortalized MCF- 1 OF cells after treatment with
benzo(a)pyrene (BP). MCF-1OF cells do not form colonies in agar methocel and form
ductules in collagen gel, whereas transformed BP 1E cells form colonies in agar methocel
and have lost their ductulogenic capacity in collagen gel.

Transfer of chromosome 17 to BP 1E cells by microcell-mediated chromosome transfer
(MMCT) originated BP 1 E- 1 7neo cells, which, like the parent MCF- 1 OF cells, did not
form colonies in agar methocel, formed ductules in collagen gel and exhibited a 1.5-fold
increase in their doubling time over the values observed in BP1E cells. The three cell
lines were analyzed cytogenetically, by comparative genomic hybridization (CGH) and
by camptothecin-induced apoptosis using the GuavaNexin procedure. The expression of
DEFCAP gene, a potential regulator of apoptotic caspases located in 17p 13.2, was
analyzed by RT-PCR. Cytogenetic analysis confirmed the presence of an additional
chromosome 17 in BP1E-17neo cells. CGH analysis revealed that it was rearranged,
containing most of the p arm and the telomeric region of the q arm (q22-ter). Uninduced
and camptothecin-induced apoptosis was maximal in MCF-1 OF cells and minimal in
BP 1E cells. The percentage of apoptotic BP 1 E- 17neo cells was lower than that of MCF-
IOF cells, but it was significantly higher than in BP1E cells. The expression of DEFCAP
gene was 3-fold down-regulated in BP1E and and 13-fold up-regulated in BP1E-17neo
cells when compared with the parental cell line MCF- 1 OF.

We concluded that transfer of chromosome 17 reverted many of the phenotypes of
neoplastic transformation expressed by human breast epithelial cells and that DEFCAP
gene plays a functional role in this phenomenon. We expect that this novel findings will
benefit from the discussions with consumers, general public and scientists alike and will
serve for the the dissemination of this essential knowledge.
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